# DMG40960F040\_01WTC DMG40960F040\_01WTCZ01

#### Features:

- Based on T5L0, running DGUS II system.
- 4.0-inch, 400\*960 pixels resolution, 262K colors, IPS-TFT-LCD, wide viewing angle.
- LCD and TP frame lamination process.
- Optional TP appearance of black and white.
- COF structure. The entire core circuit of the smart screen is fixed on the FPC of LCM, featured by light and thin structure, low cost and easy production.
- 50 pins, including IO, UART, CAN, AD and PWM from user CPU core for easy secondary development.





### **1 External Interface**



**User interface** 

| PIN | Definition                      | I/O                                                               | Functional Description                                                                                                                          |  |
|-----|---------------------------------|-------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 1   | +5V                             | I                                                                 |                                                                                                                                                 |  |
| 2   | +5V                             | I                                                                 | Power supply, DC3.6-5.5V.                                                                                                                       |  |
| 3   | GND                             | GND                                                               |                                                                                                                                                 |  |
| 4   | GND                             | GND                                                               | GND                                                                                                                                             |  |
| 5   | GND                             | GND                                                               |                                                                                                                                                 |  |
| 6   | AD7                             | I                                                                 | 5 input ADCs. 12-bit resolution in case of 3.3V power supply. 0-3.3V                                                                            |  |
| 7   | AD6                             | I                                                                 | input voltage. Except for AD6, the rest data is sent to OS core via<br>UART3 in real time with 16KHz sampling rate. AD1 and AD5 can be          |  |
| 8   | AD5                             | 1                                                                 | used in parallel, and AD3 and AD7 can be used in parallel, which equals to two 32KHz sampling AD. AD1, AD3, AD5, AD7 can be used in             |  |
| 9   | AD3   parallel, which equals to | parallel, which equals to a 64KHz sampling AD; the data is summed |                                                                                                                                                 |  |
| 10  | AD1                             | Т                                                                 | 1024 times and then divided by 64 to obtain a 64Hz 16bit AD value by oversampling.                                                              |  |
| 11  | +3.3                            | 0                                                                 | 3.3V output, maximum load of 150mA.                                                                                                             |  |
| 12  | SPK                             | 0                                                                 | External MOSFET to drive buzzer or speaker. The external 10K resistor should be pulled down to the ground to ensure that power-on is low level. |  |
| 13  | SD_CD                           | 10                                                                |                                                                                                                                                 |  |
| 14  | SD_CK                           | 0                                                                 |                                                                                                                                                 |  |
| 15  | SD_D3                           | 10                                                                | SD/SDHC interface,The SD_CK connects a 22pF capacitor to GND                                                                                    |  |
| 16  | SD_D2                           | 10                                                                | near the SD card interface.                                                                                                                     |  |
| 17  | SD_D1                           | 10                                                                |                                                                                                                                                 |  |
| 18  | SD_D0                           | IO                                                                |                                                                                                                                                 |  |
| 19  | PWM0                            | о                                                                 | 2 16-bit PWM output. The external 10K resistor should be pulled down to the ground to ensure that power-on is low level.                        |  |
| 20  | PWM1                            | O The OS core can be co                                           | The OS core can be controlled in real time via UART3.                                                                                           |  |
| 21  | P3.3                            | IO                                                                | If using RX8130 or SD2058 I2C RTC to connect to both IOs,                                                                                       |  |
| 22  | P3.2                            | IO                                                                | SCL should be connected to P3.2,and SDA connected to P3.3 in parallel with 10K resistor pull-up to 3.3V.                                        |  |

\_

| 23 | P3.1/EX1  | Ю  | It can be used as an external interrupt 1 input at the same time, and supports both low voltage level or trailing edge interrupt modes. |
|----|-----------|----|-----------------------------------------------------------------------------------------------------------------------------------------|
| 24 | P3.0/EX0  | ю  | It can be used as an external interrupt 0 input at the same time, and supports both low voltage level or trailing edge interrupt modes. |
| 25 | P2.7      | IO | IO interface                                                                                                                            |
| 26 | P2.6      | IO | IO interface                                                                                                                            |
| 27 | P2.5      | IO | IO interface                                                                                                                            |
| 28 | P2.4      | Ю  | IO interface                                                                                                                            |
| 29 | P2.3      | ю  | IO interface                                                                                                                            |
| 30 | P2.2      | Ю  | IO interface                                                                                                                            |
| 31 | P2.1      | IO | IO interface                                                                                                                            |
| 32 | P2.0      | IO | IO interface                                                                                                                            |
| 33 | P1.7      | IO | IO interface                                                                                                                            |
| 34 | P1.6      | IO | IO interface                                                                                                                            |
| 35 | P1.5      | Ю  | IO interface                                                                                                                            |
| 36 | P1.4      | IO | IO interface                                                                                                                            |
| 37 | P1.3      | IO | IO interface                                                                                                                            |
| 38 | P1.2      | IO | IO interface                                                                                                                            |
| 39 | P1.1      | IO | IO interface                                                                                                                            |
| 40 | P1.0      | Ю  | IO interface                                                                                                                            |
| 41 | UART4_TXD | 0  | UART4                                                                                                                                   |
| 42 | UART4_RXD | Ι  | UAR14                                                                                                                                   |
| 43 | UART5_TXD | 0  | UART5                                                                                                                                   |
| 44 | UART5_RXD | Τ  |                                                                                                                                         |
| 45 | P0.0      | ю  | IO interface                                                                                                                            |
| 46 | P0.1      | IO | IO interface                                                                                                                            |
| 47 | CAN_TX    | 0  | CAN interface (External CAN chip drive is required .See 6 - (6) for circuit                                                             |
| 48 | CAN_RX    | I  | reference)                                                                                                                              |
| 49 | UART2_TXD | 0  | LIAPT2/LIAPT0 sorial part of OS care)                                                                                                   |
| 50 | UART2_RXD | I  | UART2(UART0 serial port of OS core)                                                                                                     |

# **2** Specification Parameters

# **2.1 Product Parameters**

| Main Chip              | T5L0                                                                                                                                                |
|------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|
| User Interface         | 50Pin_0.5mm FPC                                                                                                                                     |
| FLASH                  | 8M Bytes                                                                                                                                            |
| UI Version             | DGUSII / TA                                                                                                                                         |
| Power Supply           | HDL662S adapter board power supply                                                                                                                  |
| Display Color          | 262K colors                                                                                                                                         |
| Dimensions             | 4.0 inch                                                                                                                                            |
| Resolution             | 400*960                                                                                                                                             |
| Active Area            | 39.18mm (W)×94.03mm (H)                                                                                                                             |
| Viewing Angle          | Wide viewing angel, typical value of 85°/85°/85°/85°(L/R/U/D)                                                                                       |
| Backlight Service Life | >10000 hours (Time of the brightness decaying to 50% on the condition of continuous working with the maximum brightness)                            |
| Brightness             | 250nit                                                                                                                                              |
| Brightness Control     | 0~100 grade (When the brightness is adjusted to 1%~30% of the maximum brightness, flickering may occur and is not recommended to use in this range) |
|                        |                                                                                                                                                     |
| ТР Туре                | CTP (Capacitive Touch Panel)                                                                                                                        |
| TP Structure           | G+G structure                                                                                                                                       |
| Touch Mode             | Single point touch, support continuous sliding touch                                                                                                |

|                     | 51 , 11 5                  |
|---------------------|----------------------------|
| Surface Hardness    | 6Н                         |
| Light Transmittance | Over 90%                   |
| Life                | Over 1,000,000 times touch |
|                     |                            |

#### 2.2 Interface Parameters Conditions Item Min Тур Max Unit **Baud Rate** User Set(Configure the CFG file) 3150 115200 3225600 bps V Output 1 3.0 3.3 -Output Voltage(TXD) Output 0 0 0.3 V \_ Input 1 3.3 V --Input Voltage(RXD) Input 0 0 0.5 V -UART2: TTL; UART4: TTL; (Only available after OS configuration) Interface UART5: TTL; (Only available after OS configuration) UART2: N81; **Data Format** UART4: N81/E81/O81/N82;4 modes (OS configuration) UART5: N81/E81/O81/N82;4 modes (OS configuration)

### 2.3 Electrical specifications

| Rated Power              | <2W                           |                       |  |  |
|--------------------------|-------------------------------|-----------------------|--|--|
| Operating Voltage        | 3.6~5.5V, typical value of 5V |                       |  |  |
| One setting Current      | 200mA                         | VCC=5V, max backlight |  |  |
| Operating Current        | 90mA                          | VCC=5V, backlight off |  |  |
| Recommended power supply | 5V 0.5A DC                    |                       |  |  |

# 2.4 Operating Environment

| Operating Temperature | -10℃~60℃                           |
|-----------------------|------------------------------------|
| Storage Temperature   | -20℃~70℃                           |
| Operating Humidity    | 10%~90%RH, typical value of 60% RH |

#### 3 Reliability Test

The smart screen products undergo a series of procedural reliability tests, including high and low temperature, ESD, pulse and surge, and waterproof tests before mass production to ensure product quality.

#### 3.1 ESD Test

#### Test temperature: 25°C

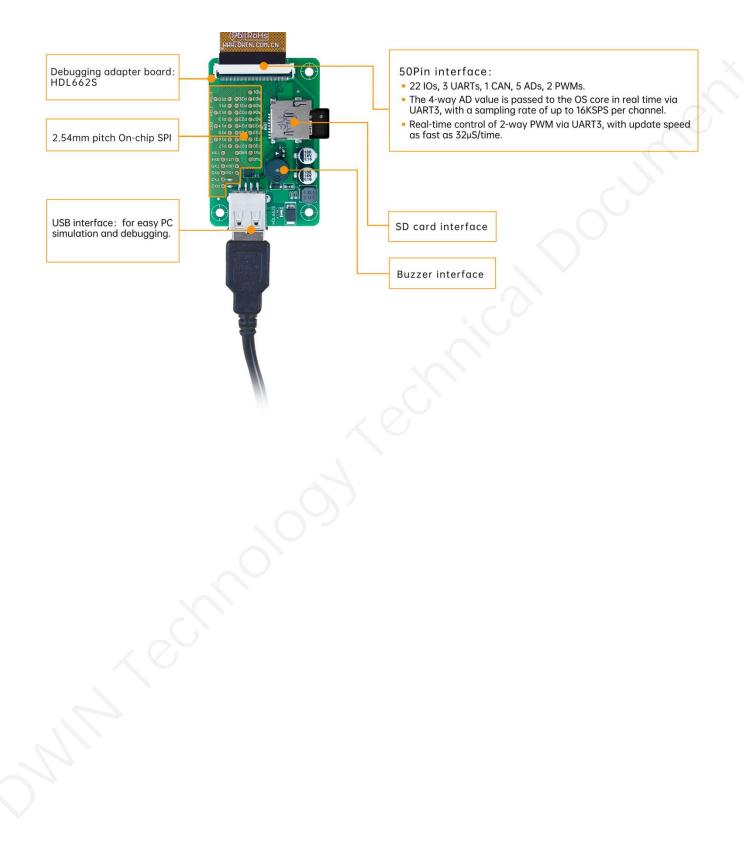
Test process: the product was placed on the test bench to perform contact and air discharge in turn of the serial screen iron frame and display area as shown in Fig.4.1 below. During the experimental process, it was observed whether the screen is dead, black, white, splash, or reboot. According to the experiment results, the performance is in line with the criteria GB/T 17626.2 B level and above.



#### 4.1Electrostatic discharge test

| Discharge Type    | Discharge Value | Result Normal operation |  |
|-------------------|-----------------|-------------------------|--|
| Contact discharge | ±4KV            |                         |  |
| Air discharge     | ±4KV            | Normal operation        |  |

# 3.2 High and Low Temperature Test


Test temperature:-20~70℃

Test process: the product will be placed obliquely in the high and low temperature test chamber for 12h for 20 on and off cycles. Then it will be check at room temperature after power on for the appearance and function, CTP offset situation, jumping point, page random switching and failure.

| Temperature             | Result           |
|-------------------------|------------------|
| High temperature (70°C) | Normal operation |
| Low temperature (-20°C) | Normal operation |

## 4 Debug

It is recommended for new users of DWIN smart LCMs to purchase official accessories. For more details, please refer to customer service center.



Operation steps: open serial assistant - custom function command - set command - send.

For example:

(1) Page switching

Tx: 5AA5 07 82 0084 5A01 0008

- (2) Standby backlight setting
  - Tx: 5AA5 07 82 0082 64 32 03E8

| Ø ≔ % \$ \$ |    | 20 h V D            |                   |                             |                               |      |       |
|-------------|----|---------------------|-------------------|-----------------------------|-------------------------------|------|-------|
|             | 8× | Home 00.bmp         |                   |                             |                               |      | _     |
| l Fictures  | 00 | DwinPCKits          |                   |                             |                               | -    |       |
| : 00.bmp    |    | Log                 | Qui               | ek instructions             | •                             |      |       |
| : oo.omp    |    |                     | S                 | stem function instruction   | Custon function instructions  |      |       |
|             |    |                     | [                 | function                    | Custom instruction            | send | cycle |
|             |    |                     |                   | Write variable space        | 5a a5 04 82 10 00 01 22 33    | send |       |
|             |    |                     |                   | Read variable space         | 5a a5 04 83 10 00 02          | send |       |
|             |    |                     |                   | CPU reset                   | 5a a5 07 82 00 04 55 aa 5a a5 | send |       |
|             |    |                     |                   | Page switching              | 5AA5 07 82 0084 5A01 0008     | send |       |
|             |    |                     |                   | Standby backlight setting   | 5AA5 07 82 0082 64 32 03E8    | send |       |
|             |    |                     |                   |                             |                               | send |       |
|             |    |                     |                   |                             | ļ                             | send |       |
|             |    |                     |                   |                             |                               | send | _     |
|             |    |                     |                   |                             |                               | send |       |
|             |    |                     |                   | 1                           |                               | send | 100   |
|             |    |                     |                   | 2                           |                               | send |       |
|             |    |                     |                   | 3                           |                               | send |       |
|             |    |                     |                   | 4                           |                               | send |       |
|             |    |                     |                   | 5                           |                               | send |       |
|             |    |                     |                   | Automatic loop send interv  | 1 1000 1 10                   |      |       |
|             |    |                     | Clear Log         | Autowarte 1009 Sand, Interv | 1000 V NS                     |      |       |
|             |    | Serial Fort Setting | Serial Port Order |                             |                               |      |       |
|             |    |                     | ○ Write VP        | VP Address Ox 0             | VF Length/Word On 1 0         |      |       |

# **DGUS** operation

# 5 T5L0 ASIC

T5L0 ASIC is a low-power, cost-effective, GUI and application highly integrated single-chip dual-core ASIC designed by DWIN Technology for small-size LCD and mass produced in 2020.

(1) Mature and stable 8051 core which is the most widely used with the maximum operating frequency of T5L is

up to 250MHz, 1T(single instruction cycle)high speed operation.

(2) Separate GUI CPU core running DGUS II System:

- High-speed display memory, 2.4GB/S bandwidth. 18-bit color display resolution support up to 1024\*768 (TA mode), 854\*480 (DGUS mode).
- 2D hardware acceleration and the UI with animation and icons as its main feature is extremely cool and smooth.
- Images and icons stored in JPEG format. Adopt Low-cost 16Mbytes SPI Flash.
- High quality ratio and sound restoration and playback.
- 128Kbytes variable storage space for exchanging data with OS CPU Core and memory.
- 2 10-bit 800KHz DC/DC controllers simplify LED backlight, analog power design and save cost and space.
- Support DGUS development and simulation on PC. Support backend remote upgrade.

(3) Separate CPU (OS CPU) core runs user 8051 code or DWIN OS system and user CPU is omitted in

practical application:

- Standard 8051 core and instruction set, 64Kbytes code space, 32Kbytes on-chip RAM.
- 64-bit integer mathematical operation unit (MDU), including 64-bit MAC and 64-bit divider.
- Built-in software WDT, 3 16-bit Timers, 12 interrupt signals support up to four levels of interrupt nesting.
- Support IAP online simulation and debugging with unlimited breakpoints.
- Upgrade code online through DGUS system.
- (4) 1Mbytes on-chip Flash with DWIN patent encryption technology ensure code and data security.

(5) Operating temperature ranges from -40  $^{\circ}$ C to +85  $^{\circ}$ C (IC operating temperature customizable from -55  $^{\circ}$ C to 105  $^{\circ}$ C).

(6) Low power consumption and strong anti-interference ability. It can work stably on double-sided PCB and passes EMC/EMI test easily.

# 6 COF Screen Secondary Development

Standard 8051 core, easy to develop in C language and assembly language.

#### (1) 22 IOs:

To use output function of IO, you need to open the output control, output strength and peripheral multiplexing power-on initialization configuration. Subsequent use of IO is consistent with the standard 8051 as follows.

```
#include "sys.h"
sbit LED1 = P1^0;
sbit KEY1 = P1^1;
//Pin initialization
void io init()
         PORTDRV = 0x01;//Driving current is 8mA
         P1MDOUT |= 0x01;//Set P1.0 as output to drive LED1 light
        P1MDOUT &= 0xFD;//Set P1.1 as input to read the voltage level change of the pin
void main(void)
         u16 cnt_1ms;
        u16 key1_sta;//Store the voltage level state of the KEY1 pin
         sys init();//System initialization
        io_init();//Pin initialization
        cnt 1ms = 0;
         key1 sta = KEY1;
        while(1)
         {
                 cnt 1ms++;
                  sys_delay_ms(1);// Delay sub-function, LED1 blinks every 500ms.
                  if(cnt_1ms==500)
                  {
                           LED1 = !LED1;
                           cnt 1ms = 0;
                  //If the voltage level of the pin has changed, it will be updated in the interface
                 if(key1_sta!=KEY1)
                  {
                           key1 sta = KEY1;
                           sys_write_vp(0x1000,(u8*)&key1_sta,1);
                 }
        }
```

#### (2) 3 UARTs:

High-speed serial port, supporting up to 3225600bps,as follows.

```
#include "sys.h"
#include "uart2.h"
void main(void)
        u16 len;
        sys init();//System initialization
        uart2_init(115200);//Initialize serial port 2
        while(1)
        Ł
                  if(uart2_rx_sta&UART2_PACKET_OK)//Received serial packet
                           len = uart2 rx sta&UART2 PACKET LEN;//Get the length of the serial packet without "\r\n"or '\n' terminator
                           uart2_buf[len++] = 0;//Add 2 empty strings at the end
                           uart2_buf[len++] = 0;
                           printf("T5L_C51:%s\r\n",uart2_buf);//Return the received packet to the sender with the prefix "T5L_C51:"
                           sys_write_vp(0x2000,uart2_buf,len/2+1);//At the same time display the packet to the interface
                           uart2_rx_sta = 0;//Reset means that this serial packet is disposed of
                 }
        }
```

#### (3) 1 CAN:

Only the special function registers of the CAN need to be configured as follows.

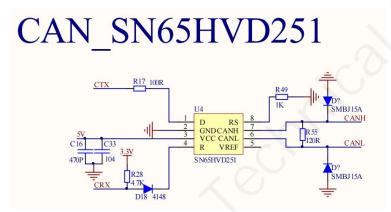
#### void CanInit()

| P0MDOUT = 0x04; //P0.2(CAN_TX) is configured as output                                                           |
|------------------------------------------------------------------------------------------------------------------|
| P0 = 0xFF; //Output high voltage level                                                                           |
| ADR H = 0xFF; //Configuring DGUS variable memory addresses                                                       |
| ADR_M = 0x00;                                                                                                    |
| ADR L = 0x60;                                                                                                    |
| ADR INC = 1; //Configure address increments                                                                      |
| RAMMODE = 0x8F; //Write mode                                                                                     |
| while(!APP_ACK); //Waiting for confirmation, Among answers of Hardware to 8051 occupied variable memory request, |
| 1=OK and 0=BUSY, which need to continue to wait.                                                                 |
| DATA3 = 0x1A; //Variable memory address 0xFF:0060 assignment                                                     |
| DATAS = 0x17; DATAS = 0x17;                                                                                      |
| DATA2 = 0x17,<br>DATA1 = 0x0F;                                                                                   |
| ·                                                                                                                |
|                                                                                                                  |
| APP_EN = 1;                                                                                                      |
| while(APP_EN); //Wait for the data operation to be completed, and reset after the operation is completed         |
| DATA3 = 0; //Acceptance register 0xFF:0061 assignment reset                                                      |
|                                                                                                                  |
| DATA1 = 0;                                                                                                       |
|                                                                                                                  |
| APP_EN = 1;                                                                                                      |
| while(APP_EN); //Wait for the data operation to be completed, and reset after the operation is completed         |
| DATA3 = 0xFF; //Acceptance Mask Register 0xFF:0062 all set to 1, and no acceptance of reception                  |
| DATA2 = 0xFF;                                                                                                    |
| DATA1 = 0xFF;                                                                                                    |
| DATA0 = 0xFF;                                                                                                    |
| APP_EN = 1;                                                                                                      |
| while(APP_EN); //Wait for the data operation to be completed, and reset after the operation is completed         |
| RAMMODE = 0; //Terminate access to DGUS variable memory                                                          |
| CAN_CR = 0xA0; //Open CAN and configure FF0060-FF0062                                                            |
| while(CAN_CR&0x20); // Execute the configuration of FF0060-FF0062                                                |
| ECAN = 1; //Open the CAN interrupt                                                                               |
| EA = 1; //Open the total interrupt                                                                               |
|                                                                                                                  |
|                                                                                                                  |

# (4) 5 A/Ds: 12-bit, supports sampling to 16-bit

Only the special function registers of the A/Ds need to be configured as follows.

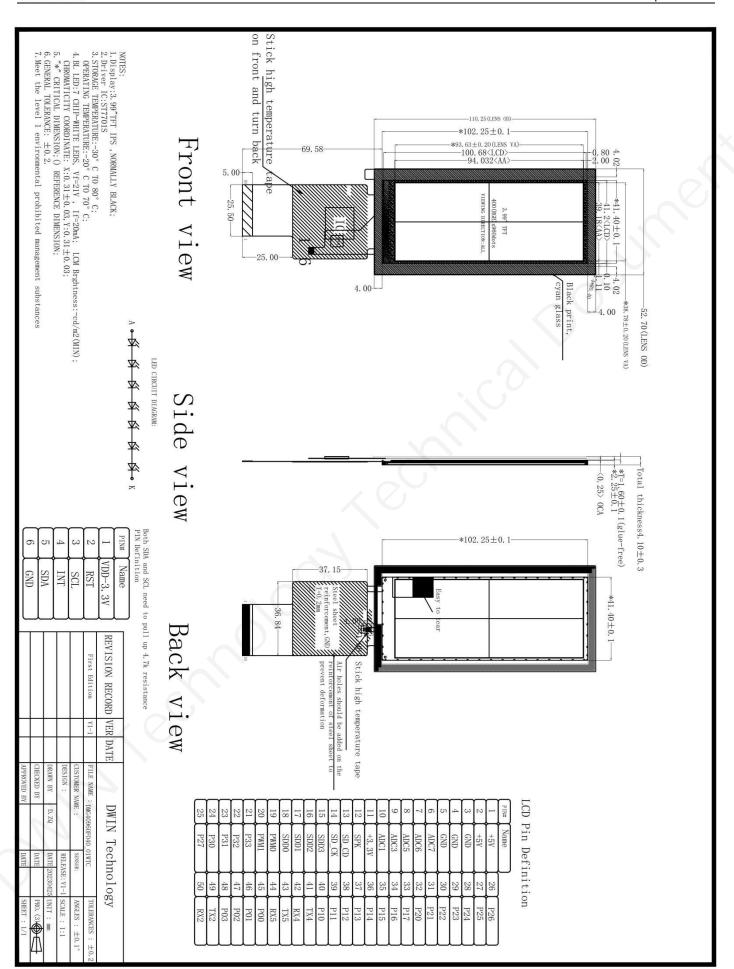
```
#include "sys.h"
#include "adc.h"
void main(void)
{
    u16 ad;
    float vol;
    sys_init();//System initialization
    while(1)
    {
        ad = adc_read_avg(ADC_CHANNEL0,10);//1.Read the ad value of channel 0
        vol = ad*(3300.0f/4095);//2.Calculate the voltage in mV
        sys_write_vp(0x2000,(u8*)&ad,1);// Update the ad value
        sys_write_vp(0x2001,(u8*)&vol,2);//Update the voltage value
    }
}
```

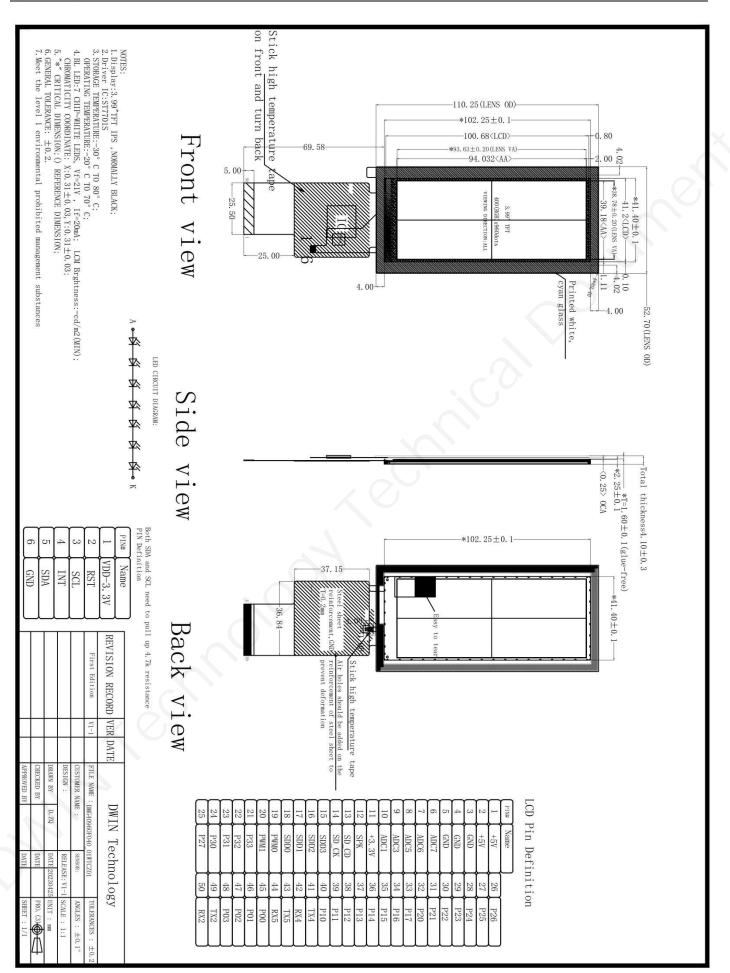

13

### (5) 2 PWMs: 16-bit high accuracy, adjustable resolution.

Only need to configure the frequency and duty cycle of PWM as follows.

```
void Pwm_0()
{
    u8 i=0;
    u8 temp[6]={0xAA,0x20,0x42,0x56,0x78,0};//Set the pwm_0 duty cycle to 100%
    Write_Dgus(0x87,0x2042);//Configure the frequency100khz
    Write_Dgus(0x86,0x5A01);//
    for(i=0;i<5;i++) //Checksum
        temp[5]+=temp[i];
    for(i=0;i<6;i++)//Configure the duty cycle
        OneSendData3(temp[i]);</pre>
```


(6) CAN circuit design parameters




# 7 Packing Capacity & Dimension

| Dimension        |                                         |   |    |     |  |
|------------------|-----------------------------------------|---|----|-----|--|
| Dimension        | 52.70(W) ×110.25(H) × 4.10(T) mm        |   |    |     |  |
| Net Weight       | 45g                                     |   |    |     |  |
| Packing Capacity | Packing Capacity                        |   |    |     |  |
| Model            | Size Layer Quantity/Layer Quantity(Pcs) |   |    |     |  |
| Carton1:         | 220mm(L)×160mm(W)×47mm(H)               | 1 | 4  | 4   |  |
| Carton2:         | 250mm(L)×200mm(W)×80mm(H)               | 1 | 8  | 8   |  |
| Carton3:         | 320mm(L)×270mm(W)×80mm(H)               | 1 | 16 | 16  |  |
| Carton4:         | 450mm(L)×350mm(W)×300mm(H)              | 2 | 60 | 120 |  |
| Carton5:         | 600mm(L)×450mm(W)×300mm(H)              | 3 | 80 | 240 |  |

Disclaimer: The product design is subject to alternation and improvement without prior notice.





#### 8 Revision records

| Rev Revise Date |            | Content       | Editor  |  |
|-----------------|------------|---------------|---------|--|
| 00              | 2023-05-16 | First Edition | Xu Ying |  |

Please contact us if you have any questions about the use of this document or our products, or if you would like to know the latest information about our products:

- Customer service Tel: +86 400 018 9008
- Customer service email: dwinhmi@dwin.com.cn
- DWIN Developer Forum: <u>https://forums.dwin-global.com/</u>

Thank you all for continuous support of DWIN, and your approval is the driving force of our progress!